References

Bruce, A., Corbin, J. L., Dahlstrom, P. L., Hyde, J. R., Minelli, M., Stiefel, E. I., Spencer, J. T. \& Zubieta, J. (1982). Inorg. Chem. 21, 917-926.

Cleare, M. J. \& Hydes, P. C. (1980). Met. Ions Biol. Syst. 11, 1-53.
Farrell, N. (1982). J. Chem. Soc. Chem. Commun. pp. 331-332. Freeman, W. A. (1977). Acta Cryst. B33, 191-194.
Gainsford, G. J., Jackson, W. G. \& Sargeson, A. M. (1982). J. Am. Chem. Soc. 104, 137-141.

Giraldi, T., Sava, G., Bertoli, G., Mestroni, G. \& Zassonovich, G. (1977). Cancer Res. 37, 2662-2666.
Howle, J. A., Gale, G. R. \& Smith, A. B. (1972). Biochem. Pharmacol. 21, 1465-1475.
Lambert, D. O. \& Swank, D. W. (1979). J. Org. Chem. 44, 2632-2636.
Sheldrick, G. M. (1978). SHELXTL. An Integrated System for Solving, Refining and Displaying Crystal Structures from Diffraction Data. Univ. of Göttingen.
Whiting, R. F. \& Ottensmeyer, F. P. (1977). Biochim. Biophys. Acta, 474, 334-348.

Structure of the Blue Copper(II) Complex $\{[7 R(S), 14 R(S)]-5,5,7,12,12,14-$ Hexamethyl-1,4,8,11-tetraazacyclotetradecane $\}$ nitratocopper(II) Perchlorate, $\left[\mathrm{Cu}\left(\mathrm{NO}_{3}\right)\left(\mathrm{C}_{16} \mathrm{H}_{36} \mathrm{~N}_{4}\right)\right]\left(\mathrm{ClO}_{4}\right)$

By Tsong-Jen Lee, H. Y. Julie Lee, Chung-Shin Lee and Chung-Sun Chung
National Tsing Hua University, Hsinchu, Taiwan 300

(Received 1 September 1983; accepted 3 January 1984)

Abstract

M_{r}=508.49\) (5), monoclinic, $P 2_{1} / c, a=$ 8.769 (5), $\quad b=17.809$ (5), $\quad c=14.344$ (5) $\AA, \quad V=$ 2240 (3) $\AA^{3}, Z=4, D_{m}=1.48$ (5) (by flotation in CCl_{4}-hexane), $\quad D_{x}=1.51 \mathrm{Mg} \mathrm{m}^{-3}, \quad$ Mo $K \alpha, \quad \lambda=$ $0.71069 \AA, \mu=1.187 \mathrm{~mm}^{-1}, \quad F(000)=1077.6, \quad T=$ 296 (4) K. $R(F)=0.070$ for 1754 reflections. The central copper atom exhibits trigonal bipyramidal coordination with the four N atoms of the macrocyclic ligand and an O atom of a nitrate ion, the latter being on the equatorial plane. Thus, the four ligating N atoms of the macrocyclic ligand are not coplanar. Intramolecular hydrogen bonds are formed between the coordinated O atom and the two apical N atoms. The two non-ligating O atoms of each nitrate ion are hydrogen bonded to the two equatorial N atoms of the adjacent complex ion. The perchlorate ions are linked to the macrocyclic ligand by hydrogen bonds.

Introduction. In the blue complex $\left[\{\mathrm{Cu}(\text { tet } \mathrm{b})\}_{2} \mathrm{Cl}\right]$ $\left(\mathrm{ClO}_{4}\right)_{3}$,* the chloride ion sits between the adjacent copper atoms and acts as a bridging atom. However, the corresponding binuclear complexes with bromide and iodide are not formed because the ionic radius of Br^{-}or I^{-}is so large that the amine groups are too far away to form hydrogen bonds with perchlorate ions (Bauer, Robinson \& Margerum, 1973). In order to investigate the stabilizing effect of the hydrogen bonds and the coordination bonds around the copper atom,

[^0]0108-2701/84/040641-04\$01.50
various atoms or ions are used to replace the chloride ion. In this work NO_{3}^{-}is used in place of Cl^{-}and the results are compared with our previous work on the crystal structure of $\left[\mathrm{Cu}\left(\right.\right.$ tet b) $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)\right]\left(\mathrm{ClO}_{4}\right)_{2}($ Sheu, Lee, Lu, Liang \& Chung, 1983). Detailed structures of the two isomorphous crystals are compared.

Experimental. 2 g of $\left[\left\{\mathrm{Cu}(\text { tet b) })_{2}\right\} \mathrm{Cl}\right]\left(\mathrm{ClO}_{4}\right)_{3}$, prepared as described by Bauer et al. (1973), was dissolved in hot dilute nitric acid. Silver nitrate was then added to the solution until AgCl was completely precipitated. The precipitate of AgCl was filtered off. Blue needle crystals of $\left[\mathrm{Cu}\left(\mathrm{NO}_{3}\right)(\right.$ tet $\left.b)\right]\left(\mathrm{ClO}_{4}\right)$ were formed after evaporation of the solution. The crystals were dried in air at room temperature and used for X-ray work.

Experimental data and structure solution parameters are summarized in Table 1. After correction for background, Lorentz-polarization, absorption and time-decay effects, 1754 independent reflections were found with $F_{o}>3 \sigma(F)$.

Structure solved by heavy-atom method; full-matrix least-squares refinements (ORFLS; Busing, Martin \& Levy, 1962) for coordinates and anisotropic temperature factors of non-hydrogen atoms; $\sum w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2}$ minimized, $w=\left[\sigma_{F}^{2}(I)+q\left|F_{o}\right|^{2}\right]^{-1}$, $\sigma_{F}(I)=\left[k / 2(\mathrm{Lp})^{1 / 2}\right]\left\{\left[\sigma^{2}(I)_{\text {counting }}+(0.02 I)^{2}\right] / I\right\}^{1 / 2}, \mathrm{Lp}, I$, k are the Lorentz-polarization factors, reflection intensity and scale factors, respectively; the factor 0.02 is the additional error estimated for our present instrumental instability (q set to 0.001 finally). To locate the H atoms in the methyl groups, one of the highest peaks around the C atom in the methyl groups was picked up from the difference Fourier map; the

Table 1. Experimental data and structure refinement parameters

Crystal size (mm)
Diffractometer and data collection technique

Scan width $\left({ }^{\circ}\right)$
Number and θ range used for measuring lattice parameters Absorption correction applied

Transmission factors
Maximum value of $(\sin \theta) / \lambda$ reached in intensity measurement
Range of $h k l$
Intensity variation of standard reflections
Number of reflections measured
Number of observed unique reflections
Criterion for recognizing
unobserved reflections
Method used to solve the structure
Maximum height in final difference Fourier synthesis
Parameters refined, non-hydrogen atoms
hydrogen atoms
Atomic scattering factors f^{\prime} and $f^{\prime \prime}$
Number of reflections per parameter
$S=\left[\sum w\left(\left|F_{0}\right|-\left|F_{c}\right|\right)^{2} /(m-n)\right]^{1 / 2}$
$R_{\operatorname{lnt}}(F)=\Sigma\left(F_{o}-\left\langle F_{o}\right\rangle\right) / \Sigma F_{0}$
$0.1 \times 0.2 \times 0.3$
$\omega-2 \theta$ scan, four-circle
\quad diffractometer (Syntex $P \overline{1}$)
with Nb filter
$2.0+0.7$ tan $\theta ;$ starting 1°
below $K \alpha_{1}$ and 1° above $K \alpha_{2}$
15 reflections with $12<2 \theta<25^{\circ}$
Experimental absorption
correction based on ψ scan
(North, Phillips \& Mathews, 1968)
0.700 to 0.888
$0.538 \AA^{-1}$
0.0 .15 to $9.19,-15$
-5%

6223
1754
$F_{o}<3 \sigma(F)$
Patterson and Fourier methods
$0.27 \mathrm{e} \AA^{-3}$
(Coordinates and anisotropic
temperature factors) 270
(Coordinates and isotropic
temperature factors) 132
International Tables for X ray
Crystallography (1967, 1968)
4
1.67
0.039
other two H -atom positions were calculated on a tetrahedral basis with the following constraints: $\mathrm{C}-\mathrm{C}-\mathrm{H}$ and $\mathrm{H}-\mathrm{C}-\mathrm{H}$ set at $109.5^{\circ}, \mathrm{C}-\mathrm{H} 0.95 \AA$. When all the hydrogen atoms had been geometrically positioned, least-squares refinement of all coordinates (isotropic temperature factors for H atoms) gave $R=0.070$ ($R_{w}=0.074$) for 1754 observed reflections; $\Delta_{\mathrm{av}}=0.2 \sigma, \Delta_{\max }=0.4 \sigma$.

Discussion. The final atomic coordinates and thermal factors are listed in Table 2.* The interatomic distances and bond angles are tabulated in Table 3. The atoms in the molecule are labelled in Fig. 1 and the displacements of the atoms from the least-squares plane $[\mathrm{Cu}$, $\mathrm{N}(1), \mathrm{N}(2)$ and $\mathrm{N}(3)]$ are also indicated. The stereoview and packing of molecules are shown in Fig. 2.

In addition to ionic interaction, the nitrate and perchlorate ions are linked to the macrocyclic ligand by a net of intra- and intermolecular hydrogen bonds (as illustrated in Fig. 3a). The perchlorate ions and a coordinated nitrate ion of an adjacent complex ion are located abreast. This is different from the complex $\left[\mathrm{Cu}(\right.$ tet b$\left.)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]\left(\mathrm{ClO}_{4}\right)_{2}$ (Sheu, Lee, Lu, Liang \& Chung, 1983). The neutral ligand $\mathrm{H}_{2} \mathrm{O}$ is coordinated to the Cu atom with $\mathrm{Cu}-\mathrm{O}$ distance of 2.23 (2) \AA. The

* Lists of structure factors, anisotropic thermal parameters, H -atom parameters and the displacements from the best plane of $[\mathrm{Cu}, \mathrm{N}(1), \mathrm{N}(2)$ and $\mathrm{N}(3)]$ or $[\mathrm{Cu}, \mathrm{N}(1), \mathrm{N}(3)$ and $\mathrm{N}(4)]$ have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 39110 (25 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

Table 2. Atomic positional and thermal parameters of non-hydrogen atoms with e.s.d.'s in parentheses

The equivalent isotropic temperature factor is calculated using the expression $B_{\text {eq }}=\frac{4}{3} \sum_{i} \sum_{j} a_{i} a_{j} B_{i j}$, where the a_{i} 's are the unit-cell edges in direct space.

	x	y	z	$B_{\text {eq }}\left(\AA^{2}\right)$
Cu	0.2702 (2)	0.2132 (1)	0.0707 (1)	2.06 (9)
$\mathrm{N}(1)$	0.0768 (11)	0.1574 (5)	0.0921 (6)	1.9 (6)
$\mathrm{N}(2)$	0.3857 (10)	0.1528 (5)	0.1781 (6)	$2 \cdot 2$ (5)
$\mathrm{N}(3)$	0.4635 (10)	0.2680 (5)	0.0554 (6)	2.9 (7)
$\mathrm{N}(4)$	0.1528 (11)	0.3071 (5)	0.1178 (6)	1.9 (6)
$\mathrm{N}(11)$	0.2950 (13)	0.1756 (6)	-0.1356 (7)	$3 \cdot 2(8)$
$\mathrm{Cl}(1)$	-0.2104 (4)	0.1884 (2)	-0.1218(2)	4.1 (3)
O(11)	0.2888 (10)	0.1520 (5)	-0.0543 (5)	4.0 (6)
$\mathrm{O}(12)$	0.2942 (13)	0.1315 (6)	-0.2004 (6)	5.7 (9)
O(13)	$0 \cdot 3010$ (13)	0.2437 (5)	-0.1512 (6)	$5 \cdot 1$ (8)
$\mathrm{O}(1)$	-0.0607 (24)	0.1689 (19)	-0.1101 (13)	29.5 (40)
$\mathrm{O}(2)$	-0.2589 (21)	0.1753 (10)	-0.0323 (10)	11.5 (17)
$\mathrm{O}(3)$	-0.2048 (33)	0.2595 (9)	-0.1473 (11)	22.1 (31)
$\mathrm{O}(4)$	-0.2487 (21)	0.1427 (8)	-0.1927 (10)	11.2 (17)
C(1)	-0.0093 (13)	0.2029 (6)	$0 \cdot 1608$ (9)	2.6 (8)
C(2)	0.0891 (13)	0.0749 (7)	0.1118 (9)	2.9 (8)
C(3)	-0.0684 (16)	0.0419 (9)	0.1227 (10)	3.9 (10)
C(4)	0.1915 (13)	0.0591 (6)	$0 \cdot 1967$ (7)	1.8 (7)
C(5)	0.3625 (14)	0.0701 (6)	$0 \cdot 1877$ (8)	3.5 (8)
C(6)	0.4356 (16)	0.0409 (7)	0.2767 (9)	3.4 (9)
C(7)	0.4256 (15)	0.0304 (7)	0.1031 (8)	2.5 (8)
C(8)	0.5495 (14)	0.1778 (7)	0.1718 (9)	2.9 (8)
C(9)	0.5519 (15)	0.2600 (7)	0.1425 (8)	3.0 (8)
$\mathrm{C}(10)$	0.4570 (14)	0.3457 (6)	0.0176 (8)	2.8 (8)
C(11)	0.6139 (15)	0.3818 (8)	0.0100 (10)	4.6 (10)
C(12)	0.3513 (15)	0.3960 (6)	0.0728 (8)	$3 \cdot 1$ (6)
C(13)	0.1786 (14)	0.3800 (6)	0.0696 (8)	$3 \cdot 3$ (8)
$\mathrm{C}(14)$	0.1161 (15)	0.3773 (8)	-0.0299 (8)	3.5 (9)
C(15)	0.0979 (16)	0.4441 (7)	0.1243 (10)	5.0 (11)
C(16)	-0.0055 (14)	0.2841 (8)	0.1283 (9)	4.4 (10)

Fig. 1. Perspective view of the structure of $\mathrm{Cu}\left(\mathrm{C}_{16} \mathrm{H}_{36} \mathrm{~N}_{4}\right)$, showing the atom numbering scheme and displacements of atoms from least-squares plane of $\mathrm{Cu}, \mathrm{N}(1), \mathrm{N}(2)$ and $\mathrm{N}(3)(\AA)$. E.s.d.'s are shown as subscripts. Thermal ellipsoids are depicted at the 50% probability level.

Table 3. Bond lengths (\AA) and angles $\left({ }^{\circ}\right)$

The prime and asterisk indicate 'screw related atoms' and 'atoms translated to the next cell', respectively.

$\mathrm{Cu}-\mathrm{N}(1)$	1.992 (9)	C(2)-C(3)	1.510 (18)
$\mathrm{Cu}-\mathrm{N}(2)$	$2 \cdot 128$ (9)	C(2)-C(4)	1.534 (16)
$\mathrm{Cu}-\mathrm{N}(3)$	1.971 (9)	C(4)-C(5)	1.519 (17)
$\mathrm{Cu}-\mathrm{N}(4)$	2.080 (9)	$\mathrm{C}(5)-\mathrm{C}(6)$	1.516 (17)
$\mathrm{Cu}-\mathrm{O}(11)$	2.106 (8)	C(5)-C(7)	1.513 (17)
$\mathrm{N}(1)-\mathrm{C}(1)$	1.486 (15)	C(8)-C(9)	1.524 (17)
N(1)-C(2)	1.500 (15)	C(10)-C(11)	1.523 (18)
$\mathrm{N}(2)-\mathrm{C}(5)$	1.493 (14)	$\mathrm{C}(10)-\mathrm{C}(12)$	1.517 (17)
N(2)-C(8)	1.507 (15)	C(12)-C(13)	1.542 (18)
N(3)-C(9)	1.472 (15)	C(13)-C(14)	1.526 (17)
$\mathrm{N}(3)-\mathrm{C}(10)$	1.487 (14)	C(13)-C(15)	1.559 (18)
$\mathrm{N}(4)-\mathrm{C}(13)$	1.489 (15)	$\mathrm{C}(16)-\mathrm{C}(1)$	1.520 (18)
$\mathrm{N}(4)-\mathrm{C}(16)$	1.456 (16)	$\mathrm{Cl}-\mathrm{O}(1)$	1.368 (22)
$\mathrm{N}(1)-\mathrm{O}(1)^{*}$	3.138 (21)	$\mathrm{Cl}-\mathrm{O}(2)$	1.376 (15)
$\mathrm{N}(1)-\mathrm{O}(11)$	2.818 (12)	$\mathrm{Cl}-\mathrm{O}(3)$	1.319 (17)
$\mathrm{N}(2)-\mathrm{O}(13)^{\prime}$	3.159 (13)	$\mathrm{Cl}-\mathrm{O}(4)$	$1 \cdot 344$ (15)
$\mathrm{N}(3)-\mathrm{O}(2)$	3.207 (20)	$\mathrm{N}(1 \mathrm{I})-\mathrm{O}(11)$	1.241 (12)
$\mathrm{N}(3)-\mathrm{O}(11)$	3.009 (12)	$\mathrm{N}(11)-\mathrm{O}(12)$	1.217 (14)
$\mathrm{N}(4)-\mathrm{O}(12)^{\prime}$	3.078 (13)	$\mathrm{N}(11)-\mathrm{O}(13)$	1.234 (14)
$\mathrm{N}(1)-\mathrm{Cu}-\mathrm{N}(4)$	85.8 (4)	$\mathrm{C}(13)-\mathrm{N}(4)-\mathrm{C}(16)$	116.2 (9)
$\mathrm{N}(4)-\mathrm{Cu}-\mathrm{N}(3)$	93.8 (4)	$\mathrm{N}(4)-\mathrm{C}(16)-\mathrm{C}(1)$	108.8 (10)
$\mathrm{N}(3)-\mathrm{Cu}-\mathrm{N}(2)$	85.8 (4)	$\mathrm{C}(16)-\mathrm{C}(1)-\mathrm{N}(1)$	107.6 (10)
$\mathrm{N}(2)-\mathrm{Cu}-\mathrm{N}(1)$	$92 \cdot 1$ (4)	$\mathrm{N}(1)-\mathrm{H}(1) \cdots \mathrm{O}(1)^{*}$	156.4 (9)
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(2)$	116.4 (9)	$\mathrm{N}(1)-\mathrm{H}(1) \cdots \mathrm{O}(11)$	83.6 (6)
$\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	109.7 (10)	$\mathrm{N}(3)-\mathrm{H}(3) \cdots \mathrm{O}(2)$	138.9 (7)
$\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(4)$	111.7 (9)	$\mathrm{N}(3)-\mathrm{H}(3) \cdots \mathrm{O}(11)$	112.3 (6)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(4)$	112.1 (10)	$\mathrm{N}(2)-\mathrm{H}(2)-\cdots \mathrm{O}(13)^{\prime}$	164.6 (7)
$\mathrm{C}(2)-\mathrm{C}(4)-\mathrm{C}(5)$	118.7 (9)	$\mathrm{N}(4)-\mathrm{H}(4) \cdots \mathrm{O}(12)^{\prime}$	173.4 (6)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	107.1 (10)	$\mathrm{O}(1)-\mathrm{Cl}(1)-\mathrm{O}(2)$	98.4 (12)
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(7)$	111.1 (10)	$\mathrm{O}(2)-\mathrm{Cl}(1)-\mathrm{O}(3)$	115.8 (11)
$\mathrm{C}(7)-\mathrm{C}(5)-\mathrm{N}(2)$	109.6 (9)	$\mathrm{O}(3)-\mathrm{Cl}(1)-\mathrm{O}(4)$	112.4 (10)
$\mathrm{C}(5)-\mathrm{N}(2)-\mathrm{C}(8)$	115.3 (9)	$\mathrm{O}(4)-\mathrm{Cl}(1)-\mathrm{O}(1)$	99.9 (14)
$\mathrm{N}(2)-\mathrm{C}(8)-\mathrm{C}(9)$	108.4 (10)	$\mathrm{O}(1)-\mathrm{Cl}(1)-\mathrm{O}(3)$	103.9 (19)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{N}(3)$	108.6 (10)	$\mathrm{O}(2)-\mathrm{Cl}(1)-\mathrm{O}(4)$	121.8 (10)
$\mathrm{C}(9)-\mathrm{N}(3)-\mathrm{C}(10)$	114.7 (9)	$\mathrm{O}(11)-\mathrm{N}(11)-\mathrm{O}(12)$	120.0 (11)
$\mathrm{N}(3)-\mathrm{C}(10)-\mathrm{C}(11)$	112.7 (10)	$\mathrm{O}(12)-\mathrm{N}(11)-\mathrm{O}(13)$	119.7 (10)
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(12)$	$110 \cdot 1$ (10)	$\mathrm{O}(13)-\mathrm{N}(11)-\mathrm{O}(11)$	120.3 (10)
$\mathrm{N}(3)-\mathrm{C}(10)-\mathrm{C}(12)$	112.4 (9)	$\mathrm{Cu}-\mathrm{N}(3)-\mathrm{O}(11)$	44.2 (2)
$\mathrm{C}(10)-\mathrm{C}(12)-\mathrm{C}(13)$	118.6 (10)	$\mathrm{Cu}-\mathrm{N}(1)-\mathrm{O}(11)$	48.2 (3)
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	112.3 (10)	$\mathrm{Cu}-\mathrm{N}(1)-\mathrm{O}(1)^{*}$	98.4 (6)
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{N}(4)$	110.6 (9)	$\mathrm{Cu}-\mathrm{N}(3)-\mathrm{O}(2)$	116.4 (5)
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(15)$	109.4 (10)	$\mathrm{Cu}-\mathrm{N}(2)-\mathrm{O}(13)^{\prime}$	98.8 (4)
$\mathrm{C}(15)-\mathrm{C}(13)-\mathrm{N}(4)$	109.5 (10)	$\mathrm{Cu}-\mathrm{N}(4)-\mathrm{O}(12)^{\prime}$	111.3 (4)

$\mathrm{H}_{2} \mathrm{O}$ molecule is situated between perchlorate ions and links perchlorate ions together through hydrogen bonds. The distance between Cu and nitrate oxygen $\mathrm{O}(11)$ in $\left[\mathrm{Cu}\left(\mathrm{NO}_{3}\right)(\right.$ tet b$\left.)\right]\left(\mathrm{ClO}_{4}\right)$ is $2 \cdot 106$ (8) \AA, which is significantly shorter than the $\mathrm{Cu}-\mathrm{OH}_{2}$ distance of 2.23 (2) \dot{A}; this is probably due to the ionic character of the $\mathrm{Cu}-\mathrm{O}$ bond.

From Fig. 3(b), we can clearly see that four nitrogen atoms of tet b and the oxygen of the nitrate ion form a slightly distorted trigonal bipyramid around the Cu atom. $\mathrm{N}(2), \mathrm{N}(4)$ and $\mathrm{O}(11)$ are on the equatorial plane and $N(1)$ and $N(3)$ occupy the apexes. From the calculations with BOUNDAL,* we also found that two groups of atoms are nearly co-planar: plane 1 Cu , $N(1), N(2)$ and $N(3)$ and plane $2 \mathrm{Cu}, \mathrm{N}(1), N(3)$ and $\mathrm{N}(4)$. The dihedral angle between the two planes is 65.4 (1) ${ }^{\circ} . \dagger$

[^1]

Fig. 2. Stereoview of the packing of the molecules in a unit cell. Origin lower right corner, a axis towards the reader, c axis to the left, b axis upwards.

(a)

(b)

Fig. 3.(a) ORTEP (Johnson, 1976) drawing for the coordination sphere and adjacent perchlorate ions of two neighboring molecules illustrating the intramolecular and intermolecular hydrogen bonds (dotted line). The prime represents screw related atoms, while the asterisk indicates an atom translated to the next cell. (b) Perspective view of the structure of $\left[\mathrm{Cu}\left(\mathrm{NO}_{3}\right)\left(\mathrm{C}_{16} \mathrm{H}_{36} \mathrm{~N}_{4}\right)\right]\left(\mathrm{ClO}_{4}\right)$, showing part of the atom scheme. Hydrogen bonds are indicated by open lines. Thermal ellipsoids are plotted with 50% probability. (Distances in \AA.)

This study was supported by a grant from the National Science Council, Republic of China.

References

Bauer, R. A., Robinson, W. R. \& Margerum, D. A. (1973). J. Chem. Soc. Chem. Commun. pp. 289-290.
Busing, W. R., Martin, K. O. \& Levy, H. A. (1962). orflS. Report ORNL-TM-305. Oak Ridge National Laboratory, Tennessee.

International Tables for X-ray Crystallography (1967, 1968). Vol. II, p. 302; Vol. III, p. 202. Birmingham: Kynoch Press.
Johnson, C. K. (1976). ORTEP II. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
Sheu, H. R., Lee, T. J., Lu, T. H., Liang, B. F. \& Chung, C. S. (1983). Proc. Natl Sci. Counc. (Repub. China), Part B, Vol. 7, No. 2, pp. 113-118.
Whimp, P. O., Bailey, M. F. \& Curtis, N. F. (1970). J. Chem. Soc. A, pp. 1956-1963.

[^0]: * Abbreviation: The macrocyclic ligand, tet b, is the racemic form of $[7 R(S), 14 R(S)]-5,5,7,12,12,14$-hexamethyl-1,4,8,11-tetraazacyclotetradecane, in which the two hydrogen atoms attached to the asymmetric carbon chiral centers are on the same side of the macrocyclic plane (Whimp, Bailey \& Curtis, 1970).

[^1]: * This program was designed by Professor T. Y. Lee. With it, we can calculate all the equivalent positions of all the atoms, all the atomic distances around an atom within some given distance, the bond angles between atoms, also torsional angles or dihedral angles, with atomic labelling given, by using the atomic coordinates as input file.
 \dagger See deposit footnote.

